Queries Documentation
Release 2.0.1

Gavin M. Roy

Mar 09, 2020

Contents

5

6 Indices and tables

Installation
Contents
Issues
Source

Inspiration

Index

27

29

31

33

35

Queries Documentation, Release 2.0.1

Queries is a BSD licensed opinionated wrapper of the psycopg2 library for interacting with PostgreSQL.

The popular psycopg?2 package is a full-featured python client. Unfortunately as a developer, you're often repeating
the same steps to get started with your applications that use it. Queries aims to reduce the complexity of psycopg?2
while adding additional features to make writing PostgreSQL client applications both fast and easy.

Key features include:
* Simplified API
* Support of Python 2.7+ and 3.4+
* PyPy support via psycopg2cffi
* Asynchronous support for Tornado
* Connection information provided by URI
* Query results delivered as a generator based iterators
» Automatically registered data-type support for UUIDs, Unicode and Unicode Arrays
* Ability to directly access psycopg2 connection and cursor objects

¢ Internal connection pooling

Contents 1

https://pypi.python.org/pypi/psycopg2
https://pypi.python.org/pypi/queries
https://github.com/gmr/queries
https://pypi.python.org/pypi/psycopg2
https://pypi.python.org/pypi/psycopg2cffi
http://tornadoweb.org
https://pypi.python.org/pypi/psycopg2
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.cursor

Queries Documentation, Release 2.0.1

2 Contents

CHAPTER 1

Installation

Queries can be installed via the Python Package Index and can be installed by running easy_install queries
orpip install queries

When installing Queries, pip or easy_install will automatically install the proper dependencies for your plat-
form.

https://pypi.python.org/pypi/queries

Queries Documentation, Release 2.0.1

4 Chapter 1. Installation

CHAPTER 2

Contents

2.1 Using Queries

Queries provides both a session based API and a stripped-down simple API for interacting with PostgreSQL. If you’re
writing applications that will only have one or two queries, the simple API may be useful. Instead of creating a session
object when using the simple API methods (queries.query () and queries.callproc ()), this is done for
you. Simply pass in your query and the URIs of the PostgreSQL server to connect to:

queries.query ("SELECT now ()", "postgresqgl://postgres@localhost:5432/postgres™)

Queries built-in connection pooling will re-use connections when possible, lowering the overhead of connecting and
reconnecting. This is also true when you’re using Queries sessions in different parts of your application in the same
Python interpreter.

2.1.1 Connection URIs

When specifying a URI, if you omit the username and database name to connect with, Queries will use the cur-
rent OS username for both. You can also omit the URI when connecting to connect to localhost on port 5432 as
the current OS user, connecting to a database named for the current user. For example, if your username is fred
and you omit the URI when issuing queries.query () the URI that is constructed would be postgresqgl://
fred@localhost:5432/fred.

If you’d rather use individual values for the connection, the queries.uri() method provides a quick and easy way to
create a URI to pass into the various methods.

queries.uri (host="localhost’, port=5432, dbname="postgres’, user="postgres’, password=None)
Return a PostgreSQL connection URI for the specified values.

Parameters
* host (str)— Host to connect to
* port (int) - Port to connect on

¢ dbname (st r)— The database name

http://www.postgresql.org/docs/9.3/static/libpq-connect.html#LIBPQ-CONNSTRING

Queries Documentation, Release 2.0.1

* user (str)— User to connect as
* password (str) — The password to use, None for no password

Return str The PostgreSQL connection URI

2.1.2 Examples

The following examples demonstrate various aspects of the Queries API. For more detailed examples and documenta-
tion, visit the simple, Session API, Query Results, and TornadoSession Asynchronous API pages.

Using queries.uri to generate a URI from individual arguments

>>> queries.uri ("server—-name", 5432, "dbname", "user", "pass")
'postgresgl://user:pass@server-name:5432/dbname’

Using the queries.Session class

To execute queries or call stored procedures, you start by creating an instance of the queries. Session class. It
can act as a context manager, meaning you can use it with the with keyword and it will take care of cleaning up after
itself. For more information on the with keyword and context managers, see PEP 343.

In addition to both the queries. Session.query () and queries.Session.callproc () methods that are
similar to the simple API methods, the queries. Session class provides access to the psycopg2 connection
and cursor objects.

Using queries.Session.query

The following example shows how a queries. Session object can be used as a context manager to query the
database table:

>>> import pprint
>>> import queries
>>>
>>> with queries.Session() as s:
for row in s.query ('SELECT % FROM names'):
pprint.pprint (row)

{'id': 1, 'name': u'Jacob'}
{'id': 2, 'name': u'Mason'}
{'id': 3, 'name': u'Ethan'}

Using queries.Session.callproc

This example uses queries.Session.callproc () to execute a stored procedure and then pretty-prints the
single row results as a dictionary:

>>> import pprint

>>> import queries

>>> with queries.Session() as session:
results = session.callproc('chr', [65])
pprint.pprint (results.as_dict())

{'chr': u'A'}

6 Chapter 2. Contents

https://www.python.org/dev/peps/pep-0343
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.cursor

Queries Documentation, Release 2.0.1

2.2 Session API

The Session class allows for a unified (and simplified) view of interfacing with a PostgreSQL database server.

Connection details are passed in as a PostgreSQL URI and connections are pooled by default, allowing for reuse of
connections across modules in the Python runtime without having to pass around the object handle.

While you can still access the raw psycopg2 connection and cursor objects to provide ultimate flexibility in
how you use the queries. Session object, there are convenience methods designed to simplify the interaction
with PostgreSQL.

For psycopg2 functionality outside of what is exposed in Session, simply use the queries.Session.
connection or queries.Session.cursor properties to gain access to either object just as you would in
a program using psycopg2 directly.

2.2.1 Example Usage

The following example connects to the postgres database on localhost as the postgres user and then queries
a table, iterating over the results:

import queries

with queries.Session('postgresgl://postgres@localhost/postgres') as session:
for row in session.query ('SELECT % FROM table'):
print row

2.2.2 Class Documentation

class queries.Session (uri=’postgresql://localhost:5432°, cursor_factory=<class ‘psy-

copg2.extras.RealDictCursor’>, pool_idle_ttl=60, pool_max_size=1)
The Session class allows for a unified (and simplified) view of interfacing with a PostgreSQL database server.

The Session object can act as a context manager, providing automated cleanup and simple, Pythonic way of
interacting with the object.

Parameters
* uri (str)— PostgreSQL connection URI
* psycopg2.extensions.cursor — The cursor type to use
* pool_idle_ttl (int) - How long idle pools keep connections open
* pool_max_size (int)— The maximum size of the pool to use

backend_pid
Return the backend process ID of the PostgreSQL server that this session is connected to.

Return type int

callproc (name, args=None)
Call a stored procedure on the server, returning the results in a queries.Result s instance.

Parameters
* name (str) — The procedure name
* args (1ist)— The list of arguments to pass in

Return type queries.Results

2.2. Session API 7

https://pypi.python.org/pypi/psycopg2
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.cursor
https://pypi.python.org/pypi/psycopg2
https://pypi.python.org/pypi/psycopg2

Queries Documentation, Release 2.0.1

Raises queries.DataError

Raises queries.DatabaseError
Raises queries.IntegrityError
Raises queries.InternalError
Raises queries.InterfaceError
Raises queries.NotSupportedError
Raises queries.OperationalError
Raises queries.ProgrammingError

close ()
Explicitly close the connection and remove it from the connection pool if pooling is enabled. If the con-
nection is already closed

Raises psycopg2.InterfaceError

connection
Return the current open connection to PostgreSQL.

Return type psycopg2.extensions.connection

cursor
Return the current, active cursor for the open connection.

Return type psycopg2.extensions.cursor

encoding
Return the current client encoding value.

Return type str

notices
Return a list of up to the last 50 server notices sent to the client.

Return type list
pid
Return the pool ID used for connection pooling.

Return type str

query (sql, parameters=None)
A generator to issue a query on the server, mogrifying the parameters against the sql statement. Results
are returned as a queries.Results object which can act as an iterator and has multiple ways to access
the result data.

Parameters
e sql (str)—The SQL statement
* parameters (dict)— A dictionary of query parameters
Return type queries.Results
Raises queries.DataError
Raises queries.DatabaseError
Raises queries.IntegrityError

Raises queries.InternalError

8 Chapter 2. Contents

https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.cursor

Queries Documentation, Release 2.0.1

Raises queries.InterfaceError
Raises queries.NotSupportedError
Raises queries.OperationalError
Raises queries.ProgrammingError

set_encoding (value="UTFS§’)
Set the client encoding for the session if the value specified is different than the current client encoding.

Parameters value (str)— The encoding value to use

2.3 Query Results

Results from calls to Session.query and Session.callproc are returned as an instance of the Results
class. The Results class provides multiple ways to access the information about a query and the data returned from
PostgreSQL.

2.3.1 Examples

The following examples illustrate the various behaviors that the Result s class implements:

Using Results as an Iterator

for row in session.query('SELECT % FROM foo'):
print row

Accessing an individual row by index

results = session.query ('SELECT % FROM foo')
print results[1] # Access the second row of the results

Casting single row results as a dict

results = session.query('SELECT % FROM foo LIMIT 1")
print results.as_dict ()

Checking to see if a query was successful

results = session.query ("UPDATE foo SET bar='baz' WHERE qux='corgie'")
if results:
print 'Success'

Checking the number of rows by using len(Results)

results = session.query ('SELECT % FROM foo')

o

print ' rows' % len(results)

2.3.2 Class Documentation

class queries.Results (cursor)
The Results class contains the results returned from Session.query and Session.callproc. Itis
able to act as an iterator and provides many different methods for accessing the information about and results
from a query.

2.3. Query Results 9

Queries Documentation, Release 2.0.1

Parameters cursor (psycopg?.extensions.cursor)— The cursor for the results

as_dict ()
Return a single row result as a dictionary. If the results contain multiple rows, a ValueError will be
raised.

Returns dict
Raises ValueError

count ()
Return the number of rows that were returned from the query

Return type int

free ()
Used in asynchronous sessions for freeing results and their locked connections.

items ()
Return all of the rows that are in the result set.

Return type list

query
Return a read-only value of the query that was submitted to PostgreSQL.

Return type str

rownumber
Return the current offset of the result set

Return type int

status
Return the status message returned by PostgreSQL after the query was executed.

Return type str

2.4 TornadoSession Asynchronous API

Use a Queries Session asynchronously within the Tornado framework.

The TornadoSession class is optimized for asynchronous concurrency. Each call to TornadoSession.
callproc or TornadoSession.query grabs a free connection from the connection pool and requires that the
results that are r returned as a Results object are freed via the Results. free method. Doing so will release the
free the Results object data and release the lock on the connection so that other queries are able to use the connection.

2.4.1 Example Use

The following RequestHandler example will return a JSON document containing the query results.

import queries
from tornado import gen, web

class ExampleHandler (web.RequestHandler) :

def initialize(self):
self.session = queries.TornadoSession ()

(continues on next page)

10 Chapter 2. Contents

https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.cursor
http://www.tornadoweb.org
http://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler

Queries Documentation, Release 2.0.1

(continued from previous page)

@gen.coroutine

def get (self):
result = yield self.session.query('SELECT » FROM names')
self.finish({'data': result.items () })
result. free()

See the Examples for more TornadoSession () examples.

2.4.2 Class Documentation

class queries.tornado_session.TornadoSession (uri=’postgresql://localhost:5432°,

cursor_factory=<class ‘psy-
copg2.extras.RealDictCursor’>,
pool_idle_ttl=60, pool_max_size=25,

io_loop=None)
Session class for Tornado asynchronous applications. Uses tornado.gen.coroutine () to wrap API
methods for use in Tornado.

Utilizes connection pooling to ensure that multiple concurrent asynchronous queries do not block each other.
Heavily trafficked services will require a higher max_pool_size to allow for greater connection concurrency.

TornadoSession.query and TornadoSession.callproc mustcall Results. free
Parameters
* uri (str)— PostgreSQL connection URI
* psycopg2.extensions.cursor — The cursor type to use
* pool_idle_ttl (int) - How long idle pools keep connections open
* pool_max_size (int)— The maximum size of the pool to use

backend_pid
Return the backend process ID of the PostgreSQL server that this session is connected to.

Return type int

callproc (name, args=None)
Call a stored procedure asynchronously on the server, passing in the arguments to be passed to the stored
procedure, yielding the results as a Result s object.

You must free the results that are returned by this method to unlock the connection used to perform the
query. Failure to do so will cause your Tornado application to run out of connections.

Parameters
* name (str) — The stored procedure name
* args (11ist)— An optional list of procedure arguments
Return type Results
Raises queries.DataError
Raises queries.DatabaseError
Raises queries.IntegrityError
Raises queries.InternalError

Raises queries.InterfaceError

2.4. TornadoSession Asynchronous API 11

http://www.tornadoweb.org/en/stable/gen.html#tornado.gen.coroutine

Queries Documentation, Release 2.0.1

Raises queries.NotSupportedError
Raises queries.OperationalError
Raises queries.ProgrammingError

close ()
Explicitly close the connection and remove it from the connection pool if pooling is enabled. If the con-
nection is already closed

Raises psycopg?2.InterfaceError

connection
Do not use this directly with Tornado applications

Returns

encoding
Return the current client encoding value.

Return type str

notices
Return a list of up to the last 50 server notices sent to the client.

Return type list
pid
Return the pool ID used for connection pooling.

Return type str

query (sql, parameters=None)
Issue a query asynchronously on the server, mogrifying the parameters against the sql statement and yield-
ing the results as a Result s object.

You must free the results that are returned by this method to unlock the connection used to perform the
query. Failure to do so will cause your Tornado application to run out of connections.

Parameters
* sql (str)—The SQL statement
* parameters (dict)— A dictionary of query parameters
Return type Results
Raises queries.DataError
Raises queries.DatabaseError
Raises queries.IntegrityError
Raises queries.InternalError
Raises queries.InterfaceError
Raises queries.NotSupportedError
Raises queries.OperationalError
Raises queries.ProgrammingError

set_encoding (value="UTFS§’)
Set the client encoding for the session if the value specified is different than the current client encoding.

Parameters value (str)— The encoding value to use

12 Chapter 2. Contents

Queries Documentation, Release 2.0.1

validate ()
Validate the session can connect or has open connections to PostgreSQL. Asof 1.10.3

Deprecated since version 1.10.3: As of 1.10.3, this method only warns about Deprecation
Return type bool

class queries.tornado_session.Results (cursor, cleanup, fd)
A TornadoSession specific queries.Results class that adds the Results.free method. The
Results. free method must be called to free the connection that the results were generated on. Results
objects that are not freed will cause the connections to remain locked and your application will eventually run
out of connections in the pool.

The following examples illustrate the various behaviors that the :queries.Results class implements:

Using Results as an Iterator

results = yield session.query ('SELECT * FROM foo')
for row in results

print row
results.free ()

Accessing an individual row by index

results = yield session.query('SELECT * FROM foo')
print results[1] # Access the second row of the results
results.free()

Casting single row results as a dict

results = yield session.query('SELECT % FROM foo LIMIT 1'")
print results.as_dict ()
results.free()

Checking to see if a query was successful

sql = "UPDATE foo SET bar='baz' WHERE qux='corgie'"
results = yield session.query(sqgl)
if results:
print 'Success'
results.free ()

Checking the number of rows by using len(Results)

results = yield session.query ('SELECT » FROM foo')

v o

print rows' % len(results)

results. free ()

as_dict ()
Return a single row result as a dictionary. If the results contain multiple rows, a ValueError will be
raised.

Returns dict
Raises ValueError

count ()
Return the number of rows that were returned from the query

Return type int

2.4. TornadoSession Asynchronous API 13

Queries Documentation, Release 2.0.1

free ()
Release the results and connection lock from the TornadoSession object. This must be called after you
finish processing the results from TornadoSession.query or TornadoSession.callproc or
the connection will not be able to be reused by other asynchronous requests.

items ()
Return all of the rows that are in the result set.

Return type list

query
Return a read-only value of the query that was submitted to PostgreSQL.

Return type str

rownumber
Return the current offset of the result set

Return type int

status
Return the status message returned by PostgreSQL after the query was executed.

Return type str

2.5 Connection Pooling

The PoolManager class provides top-level access to the queries pooling mechanism, managing pools of connections
by DSN in instances of the Pool class. The connections are represented by instances of the Connect ion class.
Connection holds the psycopg2 connection handle as well as lock information that lets the Pool and PoolManager
know when connections are busy.

These classes are managed automatically by the Session and should rarely be interacted with directly.

If you would like to use the PoolManager to shutdown all connections to PostgreSQL, either reference it by class
or using the PooIManager. instance method.

class queries.pool.PoolManager
The connection pool object implements behavior around connections and their use in queries.Session objects.

We carry a pool id instead of the connection URI so that we will not be carrying the URI in memory, creating a
possible security issue.

classmethod add (pid, connection)
Add a new connection and session to a pool.

Parameters
e pid (str)—The pool id

e connection (psycopg?.extensions.connection)— The connection to add to
the pool

classmethod clean (pid)
Clean the specified pool, removing any closed connections or stale locks.

Parameters pid (str)— The pool id to clean

classmethod create (pid, idle_tti=60, max_size=1, time_method=None)
Create a new pool, with the ability to pass in values to override the default idle TTL and the default
maximum size.

14 Chapter 2. Contents

https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection

Queries Documentation, Release 2.0.1

A pool’s idle TTL defines the amount of time that a pool can be open without any sessions before it is
removed.

A pool’s max size defines the maximum number of connections that can be added to the pool to prevent
unbounded open connections.

Parameters
e pid (str)—The pool ID
* idle_ttl (int)- Time in seconds for the idle TTL
* max_size (int)- The maximum pool size

¢ time_method (callable) — Override the use of time.time () method for time
values.

Raises KeyError

classmethod free (pid, connection)
Free a connection that was locked by a session

Parameters
* pid (str) - The pool ID

e connection (psycopg2.extensions.connection) — The connection to re-
move

classmethod get (pid, session)
Get an idle, unused connection from the pool. Once a connection has been retrieved, it will be marked as
in-use until it is freed.

Parameters

e pid (str) - The pool ID

* session (queries.Session)— The session to assign to the connection
Return type psycopg2.extensions.connection

classmethod get_connection (pid, connection)
Return the specified Connect ion from the pool.

Parameters
e pid (str) - The pool ID

e connection (psycopgZ.extensions.connection)— The connection to return
for

Return type queries.pool. Connection

classmethod has_connection (pid, connection)
Check to see if a pool has the specified connection

Parameters
* pid (str) - The pool ID

e connection (psycopgZ.extensions.connection)— The connection to check
for

Return type bool

classmethod has_idle_connection (pid)
Check to see if a pool has an idle connection

2.5.

Connection Pooling 15

https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection

Queries Documentation, Release 2.0.1

Parameters pid (str)— The pool ID
Return type bool

classmethod instance()
Only allow a single PoolManager instance to exist, returning the handle for it.

Return type PoolManager

classmethod is_full (pid)
Return a bool indicating if the specified pool is full

Parameters pid (str)— The pool id
Return type bool

classmethod lock (pid, connection, session)
Explicitly lock the specified connection in the pool

Parameters
e pid (str) - The pool id

e connection (psycopg?.extensions.connection)— The connection to add to
the pool

e session (queries.Session) - The session to hold the lock

classmethod remove (pid)
Remove a pool, closing all connections

Parameters pid (str)— The pool ID

classmethod remove_connection (pid, connection)
Remove a connection from the pool, closing it if is open.

Parameters
* pid (str) - The pool ID

e connection (psycopg2.extensions.connection) — The connection to re-
move

Raises ConnectionNotFoundError

classmethod report ()
Return the state of the all of the registered pools.

Return type dict

classmethod set_idle_ttl (pid,)
Set the idle TTL for a pool, after which it will be destroyed.

Parameters
e pid (str)— The pool id
e ttl (int) - The TTL for an idle pool

classmethod set_max_size (pid, size)
Set the maximum number of connections for the specified pool

Parameters

* pid (str) - The pool to set the size for

¢ size (int) - The maximum number of connections

16 Chapter 2. Contents

https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection

Queries Documentation, Release 2.0.1

classmethod shutdown ()
Close all connections on in all pools

classmethod size (pid)
Return the number of connections in the pool

Parameters pid (str)— The pool id
:rtype int

class queries.pool.Pool (pool_id, idle_ttI=60, max_size=1, time_method=None)
A connection pool for gaining access to and managing connections

add (connection)
Add a new connection to the pool

Parameters connection (psycopg?.extensions.connection)— The connection to
add to the pool

Raises PoolFullError

busy_connections
Return a list of active/busy connections

Return type list

clean ()
Clean the pool by removing any closed connections and if the pool’s idle has exceeded its idle TTL, remove
all connections.

close ()
Close the pool by closing and removing all of the connections

closed connections
Return a list of closed connections

Return type list

connection_handle (connection)
Return a connection object for the given psycopg2 connection

Parameters connection (psycopg?.extensions.connection)— The connection to
return a parent for

Return type Connection

executing_connections
Return a list of connections actively executing queries

Return type list

free (connection)
Free the connection from use by the session that was using it.

Parameters connection (psycopg?.extensions.connection)— The connection to
free

Raises ConnectionNotFoundError

get (session)
Return an idle connection and assign the session to the connection

Parameters session (queries.Session)— The session to assign

Return type psycopg2.extensions.connection

2.5. Connection Pooling 17

https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection

Queries Documentation, Release 2.0.1

Raises NoldleConnectionsError
id
Return the ID for this pool
Return type str

idle_connections
Return a list of idle connections

Return type list

idle_duration
Return the number of seconds that the pool has had no active connections.

Return type float

is_full
Return True if there are no more open slots for connections.

Return type bool

lock (connection, session)
Explicitly lock the specified connection

Parameters
e connection (psycopgZ.extensions.connection)— The connection to lock
e session (queries.Session) - The session to hold the lock

locked_connections
Return a list of all locked connections

Return type list

remove (connection)
Remove the connection from the pool

Parameters connection (psycopg?.extensions.connection)— The connection to
remove

Raises ConnectionNotFoundError
Raises ConnectionBusyError

report ()
Return a report about the pool state and configuration.

Return type dict

set_idle_ ttl (#l)
Set the idle ttl

Parameters ttl (int)— The TTL when idle

set_max_size (size)
Set the maximum number of connections

Parameters size (int)- The maximum number of connections

shutdown ()
Forcefully shutdown the entire pool, closing all non-executing connections.

Raises ConnectionBusyError

18 Chapter 2. Contents

https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection
https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.connection

Queries Documentation, Release 2.0.1

class queries.pool.Connection (handle)
Contains the handle to the connection, the current state of the connection and methods for manipulating the state
of the connection.

busy
Return if the connection is currently executing a query or is locked by a session that still exists.

Return type bool

close ()
Close the connection

Raises ConnectionBusyError

closed
Return if the psycopg?2 connection is closed.

Return type bool

executing
Return if the connection is currently executing a query

Return type bool

free ()
Remove the lock on the connection if the connection is not active

Raises ConnectionBusyError
id
Return id of the psycopg?2 connection object

Return type int

lock (session)
Lock the connection, ensuring that it is not busy and storing a weakref for the session.

Parameters session (queries.Session)— The session to lock the connection with
Raises ConnectionBusyError

locked
Return if the connection is currently exclusively locked

Return type bool

2.6 Examples

The following examples show more advanced use of Queries:

2.6.1 Basic TornadoSession Usage

The following example implements a very basic RESTful API. The following DDL will create the table used by the
API:

CREATE TABLE widgets (sku varchar(10) NOT NULL PRIMARY KEY,
name text NOT NULL,
gty integer NOT NULL) ;

2.6. Examples 19

Queries Documentation, Release 2.0.1

The Tornado application provides two endpoints: /widget(/sku-value) and /widgets. SKUs are set to be a 10 character
value with the regex of [a-z0-9]{10}. To add a widget, call PUT on /widget, to update a widget call POST on

/widget/[SKU].

from tornado import gen, ioloop, web

import queries

class WidgetRequestHandler (web.RequestHandler) :
"""Handle the CRUD methods for a widget"""

def initialize(self):
"""Setup a queries.TornadoSession object to use when the RequestHandler
is first initialized.

def

@gen.coroutine
def delete(self,

@gen.coroutine

self.session =

options (self,

moon

queries.TornadoSession ()

xargs, =*xkwargs):
"""Let the caller know what methods are supported

URI path arguments passed in by Tornado
URI path keyword arguments passed in by Tornado

:param list args:
:param list args:

mmmn
'.join(['DELETE', 'GET', 'POST', 'PUT']))
but no data returned

self.set_header('Allow', ',
self.set_status (204) # Successful request,
self.finish ()

xargs, *xkwargs):
"""Delete a widget from the database

URI path arguments passed in by Tornado
URI path keyword arguments passed in by Tornado

:param list args:
:param list args:

mon

We need a SKU, return an error

if it wasn't passed in the URL,

if 'sku' not in kwargs:
self.set_status (403)
self.finish({'error': 'missing required value: sku'})
Delete the widget from the database by SKU
else:
results = yield self.session.query ("DELETE FROM widgets WHERE sku=% (sku)s

{'"sku': kwargs|['sku'l})

if not results:

self.set_status (404)

self.finish({'error': 'SKU not found in system'})
else:

self.set_status (204) # Success, but no data returned

self.finish ()

Free the results and release the connection lock from session.query

results.free()

(continues on next page)

20

Chapter 2. Contents

Queries Documentation, Release 2.0.1

(continued from previous page)

def get(self, *args, xxkwargs):
"""Fetch a widget from the database

:param list args: URI path arguments passed in by Tornado
:param list args: URI path keyword arguments passed in by Tornado

mmn

We need a SKU, if it wasn't passed in the URL, return an error
if 'sku' not in kwargs:

self.set_status (403)

self.finish({'error': 'missing required value: sku'})

Fetch a row from the database for the SKU
else:
results = yield self.session.query ("SELECT x FROM widgets WHERE sku=
% (sku)s",
{'"sku': kwargs|['sku'l})

No rows returned, send a 404 with a JSON error payload
if not results:

self.set_status (404)

self.finish({'error': 'SKU not found in system'})

Send back the row as a JSON object
else:
self.finish (results.as_dict())

Free the results and release the connection lock from session.query
results.free()

@gen.coroutine
def post(self, =xargs, xxkwargs):
"""Update a widget in the database

:param list args: URI path arguments passed in by Tornado
:param list args: URI path keyword arguments passed in by Tornado

mon

We need a SKU, 1if it wasn't passed in the URL, return an error
if 'sku' not in kwargs:

self.set_status (403)

self.finish({'error': 'missing required value: sku'})

Update the widget in the database by SKU
else:

sgql = "UPDATE widgets SET name=% (name)s, qty=%(gty)s WHERE sku=% (sku)s"
try:
results = yield self.session.query(sql,
{'"sku': kwargs['sku'],
'name': self.get_argument ('name'),
'gty': self.get_argument ('gty') })

Free the results and release the connection lock from session.query
results.free ()

DataError is raised when there's a problem with the data passed 1in

(continues on next page)

2.6. Examples 21

Queries Documentation, Release 2.0.1

(continued from previous page)

except queries.DataError as error:

self.set_status (409)
self.finish({'error': {'error': error.pgerror.split ('\n")[0][8:]1}})

else:
No rows means there was no record updated

if not results:
self.set_status (404)
self.finish({'error': 'SKU not found in system'})

The record was updated

else:
self.set_status (204) # Success, but not returning data

self.finish ()

@gen.coroutine
def put (self, *args, =xxkwargs):
"""Add a widget to the database

:param list args: URI path arguments passed in by Tornado
:param list args: URI path keyword arguments passed in by Tornado

mon

try:

results = yield self.session.query ("INSERT INTO widgets VALUES (%s, ¢s,

[self.get_argument ('sku'),
self.get_argument ('name'),
self.get_argument ('gty')])

Free the results and release the connection lock from session.query

results.free()
except (queries.DataError,

queries.IntegrityError) as error:

self.set_status (409)

self.finish({'error': {'error': error.pgerror.split ('\n")[0]1[8:]1}1})
else:

self.set_status (201)

self.finish ()

class WidgetsRequestHandler (web.RequestHandler) :
"""Return a list of all of the widgets in the database"""

def initialize(self):
"""Setup a queries.TornadoSession object to use when the RequestHandler

is first initialized.

mon

self.session = queries.TornadoSession ()

def options(self, =xargs, =**kwargs):
"""Let the caller know what methods are supported

:param list args: URI path arguments passed in by Tornado
:param list args: URI path keyword arguments passed in by Tornado

(continues on next page)

22 Chapter 2. Contents

Queries Documentation, Release 2.0.1

(continued from previous page)

mmn
self.set_header ('Allow', ', '.Jjoin(['GET']))
self.set_status (204)

self.finish ()

@gen.coroutine
def get (self, *args, *xkwargs):
"""Get a 1list of all the widgets from the database

:param list args: URI path arguments passed in by Tornado
:param list args: URI path keyword arguments passed in by Tornado

moon

results = yield self.session.query ('SELECT % FROM widgets ORDER BY sku')

Tornado doesn't allow you to return a list as a JSON result by default
self.finish ({'widgets': results.items()})

Free the results and release the connection lock from session.query
results.free()

if _ name_ == "_ main_ ":

application = web.Application ([
(r"/widget", WidgetRequestHandler),
(r"/widget/ (?P<sku>[a-zA-720-9]{10})", WidgetRequestHandler),
(r"/widgets", WidgetsRequestHandler)

1) .1listen (8888)

ioloop.IOLoop.instance () .start ()

2.6.2 Concurrent Queries in Tornado

The following example issues multiple concurrent queries in a single asynchronous request and will wait until all
queries are complete before progressing:

from tornado import gen, ioloop, web
import queries

class RequestHandler (web.RequestHandler) :

def initialize(self):
self.session = queries.TornadoSession ()

@gen.coroutine
@gen.coroutine
def get (self, +*args, =xxkwargs):

Issue the three queries and wait for them to finish before progressing

(glresult,

g2result,

g3result) = yield [self.session.query('SELECT % FROM foo'),
self.session.query ('SELECT x FROM bar'),
self.session.query ('INSERT INTO requests VALUES (%s, ¢s,

(continues on next page)

2.6. Examples 23

Queries Documentation, Release 2.0.1

(continued from previous page)

[self.remote_ip,
self.request_uri,
self.headers.get ('User—Agent', '')1])]
Close the connection
self.finish({'glresult': glresult.items(),
'g2result': g2result.items () })

Free the results and connection locks
glresult.free ()
g2result.free()
g3result.free ()

n ”.

if _ name_ == "_ _main_ ":

application = web.Application([
(r"/", RequestHandler)

1) .1listen (8888)

ioloop.IOLoop.instance () .start ()

2.7 Version History

2.7.1 2.0.1 2019-04-04

» Narrow the pin to psycopg2 < 2.8 due to a breaking change

¢ Fix Results iterator for Python 3.7 (#31 - nvllsvm)

2.7.2 2.0.0 2018-01-29

*» REMOVED support for Python 2.6

* FIXED CPU Pegging bug: Cleanup IOLoop and internal stack in TornadoSession on connection error. In
the case of a connection error, the failure to do this caused CPU to peg @ 100% utilization looping on a non-
existent file descriptor. Thanks to cknave for his work on identifying the issue, proposing a fix, and writing a
working test case.

* Move the integration tests to use a local docker development environment

¢ Added new methods queries.pool.Pool.report andqueries.pool.PoolManager.Report for
reporting pool status.

¢ Added new methods to queries.pool.Pool for returning a list of busy, closed, executing, and locked
connections.

2.7.3 1.10.4 2018-01-10

e Implement Results.__bool__ to be explicit about Python 3 support.

* Catch any exception raised when using TornadoSession and invoking the execute function in psycopg?2 for
exceptions raised prior to sending the query to Postgres. This could be psycopg2.Error, IndexError, KeyError,
or who knows, it’s not documented in psycopg?2.

24 Chapter 2. Contents

https://github.com/nvllsvm
https://github.com/cknave

Queries Documentation, Release 2.0.1

2.7.4 1.10.3 2017-11-01

* Remove the functionality from TornadoSession.validate and make it raise a
DeprecationWarning

e Catch the KeyError raised when PoolManager.clean () is invoked for a pool that doesn’t exist

2.7.5 1.10.2 2017-10-26

* Ensure the pool exists when executing a query in TornadoSession, the new timeout behavior prevented that from
happening.

2.7.6 1.10.1 2017-10-24

¢ Use an absolute time in the call to add_timeout

2.7.7 1.10.0 2017-09-27

* Free when tornado_session.Resultis ___del__’d without free being called.
* Auto-clean the pool after Results.free TTL+1 in tornado_session.TornadoSession

* Don’t raise NotImplementedError in Results.free for synchronous use, just treat as a noop

2.7.8 1.9.1 2016-10-25

* Add better exception handling around connections and getting the logged in user

2.7.9 1.9.0 2016-07-01

* Handle a potential race condition in TornadoSession when too many simultaneous new connections are made
and a pool fills up

* Increase logging in various places to be more informative
» Restructure queries specific exceptions to all extend off of a base QueriesException

e Trivial code cleanup

2.7.10 1.8.10 2016-06-14

 Propagate PoolManager exceptions from TornadoSession (#20) - Fix by Dave Shawley

2.7.11 1.8.9 2015-11-11

* Move to psycopg2cffi for PyPy support

2.7.12 1.7.5 2015-09-03

¢ Don’t let Session and TornadoSession share connections

2.7. Version History 25

Queries Documentation, Release 2.0.1

2.7.13 1.7.1 2015-03-25

* Fix TornadoSession’s use of cleanup (#8) - Fix by Oren Itamar

2.7.14 1.7.0 2015-01-13

e Implement Pool. shutdown and PoolManager. shutdown to cleanly shutdown all open, non-executing
connections across a Pool or all pools. Update locks in Pool operations to ensure atomicity.

2.7.15 1.6.1 2015-01-09

* Fixes an iteration error when closing a pool (#7) - Fix by Chris McGuire

2.7.16 1.6.0 2014-11-20

* Handle URI encoded password values properly

2.7.17 1.5.0 2014-10-07

* Handle empty query results in the iterator (#4) - Fix by Den Teresh

2.7.18 1.4.0 2014-09-04

* Address exception handling in tornado_session

26 Chapter 2. Contents

CHAPTER 3

Issues

Please report any issues to the Github repo at https://github.com/gmr/queries/issues

27

https://github.com/gmr/queries/issues

Queries Documentation, Release 2.0.1

28 Chapter 3. Issues

CHAPTER 4

Source

Queries source is available on Github at https://github.com/gmr/queries

29

https://github.com/gmr/queries

Queries Documentation, Release 2.0.1

30 Chapter 4. Source

CHAPTER B

Inspiration

Queries is inspired by Kenneth Reitz’s awesome work on requests.

31

https://github.com/kennethreitz/
http://docs.python-requests.org/en/latest/

Queries Documentation, Release 2.0.1

32 Chapter 5. Inspiration

CHAPTER O

Indices and tables

* genindex
* modindex

e search

33

Queries Documentation, Release 2.0.1

34 Chapter 6. Indices and tables

Index

A

add () (queries.pool.Pool method), 17

add () (queries.pool.PoolManager class method), 14

as_dict () (queries.Results method), 10

as_dict () (queries.tornado_session.Results method),
13

B

backend_pid (queries.Session attribute), 7

backend_pid (queries.tornado_session.TornadoSession
attribute), 11

busy (queries.pool. Connection attribute), 19

busy_connections (queries.pool.Pool attribute), 17

C

callproc () (queries.Session method), 7

callproc () (queries.tornado_session.TornadoSession
method), 11

clean () (queries.pool.Pool method), 17

clean () (queries.pool.PoolManager class method), 14
close () (queries.pool.Connection method), 19

close () (queries.pool.Pool method), 17

close () (queries.Session method), 8

close () (queries.tornado_session.TornadoSession

method), 12

closed (queries.pool.Connection attribute), 19

closed_connections (queries.pool.Pool attribute),
17

Connection (class in queries.pool), 18

connection (queries.Session attribute), 8

connection (queries.tornado_session.TornadoSession
attribute), 12

connection_handle () (queries.pool.Pool method),
17

count () (queries.Results method), 10

count () (queries.tornado_session.Results method), 13

create () (queries.pool.PoolManager class method),
14

cursor (queries.Session attribute), 8

E

encoding (queries.Session attribute), 8

encoding (queries.tornado_session.TornadoSession at-
tribute), 12

executing (queries.pool.Connection attribute), 19

executing_connections (queries.pool.Pool
attribute), 17

F

free () (queries.pool.Connection method), 19

free () (queries.pool.Pool method), 17

free () (queries.pool.PoolManager class method), 15
free () (queries.Results method), 10

free () (queries.tornado_session.Results method), 13

G

get () (queries.pool.Pool method), 17

get () (queries.pool. PoolManager class method), 15

get_connection () (queries.pool. PoolManager
class method), 15

H

has_connection ()
class method), 15

has_idle_connection ()
(queries.pool. PoolManager
15

(queries.pool. PoolManager

class method),

id (queries.pool.Connection attribute), 19

id (queries.pool.Pool attribute), 18

idle_connections (queries.pool.Pool attribute), 18

idle_duration (queries.pool.Pool attribute), 18

instance () (queries.pool.PoolManager
method), 16

is_full (queries.pool.Pool attribute), 18

is_full () (queries.pool.PoolManager class method),
16

items () (queries.Results method), 10

class

35

Queries Documentation, Release 2.0.1

items () (queries.tornado_session.Results method), 14

L

lock () (queries.pool.Connection method), 19

lock () (queries.pool.Pool method), 18

lock () (queries.pool.PoolManager class method), 16

locked (queries.pool.Connection attribute), 19

locked_connections (queries.pool.Pool attribute),
18

N

notices (queries.Session attribute), 8
notices (queries.tornado_session.TornadoSession at-
tribute), 12

P

pid (queries.Session attribute), 8
pid (queries.tornado_session.TornadoSession attribute),
12
Pool (class in queries.pool), 17
PoolManager (class in queries.pool), 14
Python Enhancement Proposals
PEP 343,6

Q

query (queries.Results attribute), 10

query (queries.tornado_session.Results attribute), 14

query () (queries.Session method), 8

query () (queries.tornado_session.TornadoSession
method), 12

R

remove () (queries.pool.Pool method), 18

remove () (queries.pool.PoolManager class method),
16

remove_connection ()
class method), 16

report () (queries.pool.Pool method), 18

report () (queries.pool.PoolManager class method),
16

Results (class in queries), 9

Results (class in queries.tornado_session), 13

rownumber (queries.Results attribute), 10

rownumber (queries.tornado_session.Results at-
tribute), 14

S

Session (class in queries), 7
set_encoding () (queries.Session method), 9

(queries.pool.PoolManager

set_max_size () (queries.pool.Pool method), 18

set_max_size () (queries.pool.PoolManager class
method), 16

shutdown () (queries.pool.Pool method), 18

shutdown () (queries.pool. PoolManager
method), 16

size () (queries.pool.PoolManager class method), 17

status (queries.Results attribute), 10

status (queries.tornado_session.Results attribute), 14

T

TornadoSession (class in queries.tornado_session),
11

class

U

uri () (in module queries), 5

V

validate () (queries.tornado_session.TornadoSession
method), 12

set_encoding () (queries.tornado_session.TornadoSession

method), 12
set_idle_ttl () (queries.pool.Pool method), 18
set_idle_ttl () (queries.pool.PoolManager class
method), 16

36

Index

	Installation
	Contents
	Issues
	Source
	Inspiration
	Indices and tables
	Index

